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Dz Why is everyone here?

» CDF has reported seeing an excess of events in the dijet mass spectrum
above the expected Standard Model contributions

e Everyone wants to know, can D@ confirm this?

Phys. Rev. Lett. 106, 171801 (2011)
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The CDF Excess

e Using 4.3 fb"! integrated luminosity the CDF data show an excess of 3.2
standard deviations around a dijet mass ~145 GeV

* Modeled by a Gaussian with width expected from jet resolution

+ If this is a resonance from some new particle, X, then o(pp—WX) = 4 pb
> Assumes BR(X—jj) = 1.0 and the same efficiency as WH—Ivbb with muy=150 GeV

Phys. Rev.

ett. 106, 171801 (2011)
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D5 The CDF Excess

e CDF has updated results using an integrated luminosity of 7.3 fb-!
+ Significance of excess now exceeds 4 ¢

www-cdf.fnal. gov/phys1cs/ewk/201 1/wjj/7_3.html
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Dz Analysis Outline

e Try to mirror what was done in the CDF analysis

+ Started from ongoing D@ diboson analysis and modified the kinematic
selection to replicate the CDF publication

» Make similar assumptions on modeling an excess

e Study the dijet mass distribution in the D@ data
+ Fit SM contributions to the data
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D5 D@ Detector
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DS DA Detector

>~ Central Tracking System
> Silicon Micro-strip Tracker
> Central Fiber Tracker

= 2 T Solenoid Magnet
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D5 D@ Detector

~ Calorimeters

~ Electromagnetic layers

> Hadronic layers (Fine and
Coarse)
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D& DA Detector

> Muon System
> 3 sets of detectors
~ Scintillating tiles
> Gas Drift Tubes
> 1.8 T Toroid Magnets
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‘Event Selection

e 4.3 fb'! of integrated luminosity collected by the D@ detector

+ Want events containing W(—1v) and 2 jets

v = Eg

y ‘

[llustration with beam perpendicular to page

et v = Es /I/i] H
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Tracker

. \ Hadronic

Calorimeter

Electromagnetic
Calorimeter
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D5 ‘Event Selection

e W—lv Selection:

+ Electron: -+ Muon:
- pr =20 GeV, |n/<1.0 OR *~Pr=20GeV, |n<1.0
~ Isolated track and EM shower = Hits in all three muons layers |
> Electron shower shape requirements = Isolated in tracker and calorimeter
\ qui
et ] 1
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D5 ‘Event Selection

e W—lv Selection:

+ Electron: -+ Muon:
- pr =20 GeV, |n/<1.0 OR *~Pr=20GeV, |n<1.0
~ Isolated track and EM shower = Hits in all three muons layers |
> Electron shower shape requirements - * Isolated 1n tracker and calorimeter

( /}_\ “ /?\\
bl i\ Wl \
\ . \ .
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+ Neutrino: Fr > 25 GeV
+ Leptont+Neutrino system: 30 GeV <mp(W) <200 GeV
+ Veto events with more than one charged lepton
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De5 ‘Event Selection

e Jets:
+ Reconstruction:

~ DO iterative mid-point cone algorithm with radius R=0.5

> Must be a hadronic shower and not contain noisy calorimeter cells

~ At least two tracks originating from the primary interaction point
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DES ‘Event Selection

e Jets:
+ Reconstruction:

> D@ iterative mid-point cone algorithm with radius R=0.5
> Must be a hadronic shower and not contain noisy calorimeter cells

Co . . . . Plot courtesy
~ At least two tracks originating from the primary interaction point of Adam Martin
+ Jet Energy Scale : W-+2jet Alpgen MC igg
QG

- . . .o 0_05 -_
Measured in y+jet and dijet events : —Ga

~ Correct energy to particle-level __
~ Correct for detector response, out of cone -

showering, overlap with pileup energy 0.03F i
« Relative Data/MC Correction ;

0.02

~ Measured in Z+jet events E
~ Different correction depending on DOl
quark vs. gluon content !:.. e -~
% 50 100 150 _ 200 250 300
M, (GeV)
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D5 ‘Event Selection

* Dijet Selection:
+ Two Jets:
> pr(jetl) > 30 GeV, Naetector] < 2.5
~ pr(jet2) > 30 GeV, Myetector] < 2.5

~ Veto events with additional jets meeting these criteria

+ Dijet System
> pr(Jj) =40 GeV
~ |[An(jetl,jet2)| < 2.5°

+ Reduce mis-measured P
- |A@(et] Fr)| = 0.4

*Corrected from original W&C slide, which had the typo Ap(jetl ,jet2) < 2.5
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D5 SM Predictions

e Processes with a high pt lepton modeled via Monte Carlo generators

> Pythia: WW, WZ, ZZ
~ CompHep+Pythia: single top
~ Alpgen+Pythia: WHjets, Z+jets, tt
+ With Geant-based detector simulation
e Multjjet background
+ A jet 1s mis-identified as a lepton
+ Estimated from multijet enriched data

= Muon channel: Reverse isolation cuts
~ Electron channel: Release EM quality criteria

~ Corrected for contributions already
accounted for by MC

= Normalization determined by
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o
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SM Predictions

the SM, but are only approximations

~ Make assumptions and simplifications

FElectron channel Muon channel
Dibosons 434 + 38 304 + 25
W+ jets 5620 4+ 500 3850 + 290
Z +jets 180 + 42 350 - 60
tt 4+ single top 600 £ 69 363 = 39
Multijet 932 4+ 230 151 + 69
Total predicted 7770 £ 170 5020 = 130
Data 7763 5026
N’J 1600 N bined 4
e Dominated by W+jets (~75%) >0 Eg;tj‘?’fb
+ Vital to understand this background when 53 1200— =§;‘j?st°“
looking differences of a few percent %‘ 1000— zises
B To
+ MC generators are meant to reproduce \5@5 EMEltijets
600> 2 Bked + 1 5.d.

> Many “knobs” to tune

- Different generators give different results
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Dz W+jets Modeling

 We know that Alpgen 1s not the final answer in modeling W+jets
+ Different generators have different predictions

Plots courtesy of Adam Martin
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Dz W+jets Modeling

 We know that Alpgen 1s not the final answer in modeling W+jets
+ Different generators have different predictions

Plots courtesy of Adam Martin
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+ In analyses with looser cuts (e.g., WH—Ilvbb) we see clear discrepancies of
exactly this type
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Dz W+jets Modeling

 We know that Alpgen 1s not the final answer in modeling W+jets
+ Different generators have different predictions

Plots courtesy of Adam Martin

SHERPA v1.2.3/Alpgen v2.11
B R N N R i
M..

1]

+ In analyses with looser cuts (e.g., WH—Ilvbb) we see clear discrepancies of
exactly this type
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Dz W+jets Modeling

 In other analyses we use data-driven corrections to fix the modeling of
these variables with known discrepancies between predictions
~ Jet n, AR(jetl, jet2), and pr(W)

+ However, the relatively tight selection used in this analysis reduces the
necessity for this correction

» Removes much of the problematic phase space (low p(W))

e The CDF analysis did not apply corrections to the Alpgen modeling

= To parallel their analysis, we perform the analysis without these corrections
> Still including uncertainties on the modeling of these variables

e However, to show that these corrections would not alter the conclusion
= We also present results with these corrections
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W+jets Modeling

» Large NLO/LO k-factor

+ Uncertainties due to:
~ P; threshold for Alpgen MLM matching prescription
> Parton shower model (Pythia vs. Herwig) and underlying event model (tunes)

» Renormalization/Factorization scale choice
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Systematic Uncertainties

Source of systematic

_ e Diboson signal Wt jets Ztjets Top Multijet Nature
uncertainty
Trigger/Lepton ID efficiency +5 £5 +5 +5 N
Trigger correction, muon channel +5 +5 +5 +5 D
Jet identification =] +1 = < == D
Jet energy scale £1() +5 +7 +5 D
Jet energy resolution +6 +1 +3 +6 D
Jet vertex confirmation £3 3 +4 = =i D
Luminosity +-6.1 +6.1 £6.1 +6.1 N
Cross section +6.3 +6.3 +10 N
V+4ht cross section +20 £20 N
V42 jets/V +3 jets cross section +10 +10 N
Multijet normalization +20 N
Multijet shape, electron channel ol D
Multijet shape, muon channel £10 D
Diboson modeling +8 D
Parton distribution function = 5 +5 +4 +3 D
Unclustered Energy correction 4] +3 +3 £ <] D
ALPGEN 7 and AR(jetl, jet2) corrections = o A | s ol | D
ALPGEN W pr correction &= & D
ALPGEN correction Diboson bias = =] 3] = D
Renormalization and factorization scales +1 +1 D
ALPGEN parton-jet matching parameters e i s =i D
Parton shower and Underlying Event +2 +2 D
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Systematic Uncertainties

Source of systematic

_ . Diboson signal Wt jets Ztjets Top Multijet Nature
uncertainty
Trigger/Lepton ID efficiency +5 +5 +5 +5 N
Trigger correction, muon channel +5 +5 +5 +5 D
Jet identification = =l +1 = = i D
Jet energy scale = 1{) +5 = oif +5 D
Jet energy resolution zkf) +1 0 +6 D
Jet vertex confirmation S +3 +4 =1 D
Luminosity +-6.1 +6.1 £6.1 +6.1 N
Cross section +6.3 +6.3 +10 N
V+hf cross section +20 +20 N
V42 jets/V +3 jets cross section +10 +10 N
Multijet normalization +20 N
Multijet shape, electron channel el D
Multijet shape, muon channel £10 D
Diboson modeling +8 D
Parton distribution function Sl +5 +4 == D
Unclustered Energy correction b = =0 +3 o 2] D
(ALPGEN 7 and AR(jetl, jet2) corrections e A L] D)
ALPGEN W pr correction = & D
ALPGEN correction Diboson bias ] =] =+ =] D
Renormalization and factorization scales +1 +1 D
ALPGEN parton-jet matching parameters e i s =i D
\[’arton shower and Underlying Event s +2 D
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Dz Fit of SM to Data

e Fit dijet mass distributions for all SM processes to the data

+ Construct a y* function from the ratio of Poisson likelihoods and include prior
information on the systematic uncertainties
Nbins B _|_ S Nsyst
¥'(6,8,B;D) = 2> (BA+S.~D,)-D.In|——| + > 6;

i=0 i k=0

. ™
D = observed number of events

S(6,) = predicted number of signal events
B(0,) = predicted number of background events

0, = number of standard deviations systematic k&
has been pulled away from nominal

. /

Fermilab Wine & Cheese Seminar 26 Joseph Haley (70



Dz Fit of SM to Data

e Fit dijet mass distributions for all SM processes to the data

+ Construct a y* function from the ratio of Poisson likelihoods and include prior
information on the systematic uncertainties
N,
B.+S,
x'(6,S,B;D) = 2> (B.+S.—D,)-D.In

i=0

. ™
D = observed number of events

S(6,) = predicted number of signal events
B(0,) = predicted number of background events

0, = number of standard deviations systematic k&
has been pulled away from nominal

. /

~ Templates can vary within systematic uncertainties, constrained by Gaussian priors

= Can “float” a parameter by removing the 02 prior constraint

~ Float cross sections for Diboson and W+jets contributions
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Fit of SM to Data

e Kinematic distributions after the fit in the dijet mass
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

e+un combined

No :_ D 4. =], + Data
% 1200 - @, 4.3 fb B Diboson
&) - (a) [ W+Jets
— 1000 [ Z+Jets
= : I Top
= S0 [ | Multijets
5 C — Gaussian (4 pb)
> 600— M. = 145 GeV/c?
m r i
400
200/
0 : 1 Lo PR B
0 50 100 150 200 250 300

Dijet Mass [GeV/c?|
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

e+un combined

(:]2 ; D , 4.3 fb-l + Data cig i D@, 4-3 fb-l —+— Data = Bkgd
3 12001 % Il Diboson > 00— — Bkgd +1s.d.
O 1000~ @ gk O - ® Il Diboson
— B [ Z+Jets o 250- .
= - B Top = - e (Gaussian (4 pb) .
; 200 — I:l Multijets E 200? ij =145 GeV/c
g C — Gaussian (4 pb) g 150
= 600 — M; = 145 GeV/c? 2 E
B 100 P(x?) =0.526
400 -
L 50 =
200 0 1.
= = &
0 L Il L 1 1 1 1 1 | 1 _50; L L Il ‘ Il Il Il L ‘ L 1 Il Il ‘ Il 1 1 1 | Il 1 1 1 | L Il L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c?]
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
* With Alpgen modeling corrections applied

e+u combined

(:]2 ; D , 4.3 fb-l + Data cig i D@, 4-3 fb-l —+— Data = Bkgd
3 12001 % Il Diboson > 00— — Bkgd +1s.d.
S 100 @ R O - ® Il Diboson
— B [ Z+Jets o 250- .
= - B Top = - e (Gaussian (4 pb) .
; 200 — I:l Multijets E 200? ij =145 GeV/c
g C — Gaussian (4 pb) g 150
& 600 — M, = 145 GeV/c® & -
C 100 . i P(x?) =0.741
400 s
L 50 =
200 0
B E 4
0 L Il L 1 1 1 1 1 | 1 _50; L L Il ‘ Il Il Il L ‘ L 1 Il Il ‘ Il 1 1 1 | Il 1 1 1 | L Il L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c?]
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

e+un combined

N - - Data < = = —4— Data - Bked
2 1200 D@, 4.3 b D Q2 - D@43
> - Il Diboson > 300 b —— Bkgd £ 1s.d.
S 100 @ R O = b Bl Diboson
— B [ Z+Jets o 250 .
= - I Top = c - Gaussian (4 pb) .
5 800 [ Multijets > 200 M, = 145 GeV/c
g C — Gaussian (4 pb) S 150
& 600 — M, = 145 GeV/c® 2 -
- 100/ P(x*) =0.526
400+ g
- 50 =
200 0k 1.
- c e s
0 L Il L 1 1 1 1 1 | 1 _50; L 1 L ‘ L L L L ‘ L 1 L L ‘ L 1 1 1 | L 1 1 1 | L L L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c?]
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Dz Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

e+un combined

N - - Data < = = —4— Data - Bked
2 1200 D@, 4.3 b D Q2 - D@43
> - Il Diboson > 300 b —— Bkgd £ 1s.d.
S 100 @ R O = b Bl Diboson
— B [ Z+Jets o 250 .
= - I Top = c - Gaussian (4 pb) .
5 800 [ Multijets > 200 M, = 145 GeV/c
g C — Gaussian (4 pb) S 150
& 600 — M, = 145 GeV/c® 2 -
- 100/ P(x*) =0.526
400+ g
- 50 =
200 0k 1.
- c e s
0 L Il L 1 1 1 1 1 | 1 _50; L 1 L ‘ L L L L ‘ L 1 L L ‘ L 1 1 1 | L 1 1 1 | L L L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c?]

e The DO data are consistent with the SM prediction
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DzJ Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

= . T I ] —
1 50_ - & E w] —+— Data - Bkgd
B CDF y —— Bkg Sub Data (4.3 fb' 3] § 300 D@, 4.3 tb — Bked+1s.d.
N S 1 . E &
= B §I = . O 250 = (b) I Diboson
N§ 1 OO_— - Tl \\}\\3\\ WW+WZ (all bkg syst.) __ 2 E e GaTISSIAN (4 pb)
B SHE ] et - _ 2
& I N L (b) > 200 M, = 145 GeV/e
© 50 R i 5 150
%) = BN O|RR - > C
= - O i - a -
e Ll ML NINEE, 100 P(*) = 0526
i O 3 i. | \:; \\\\ ]| Soi
\T | i | i : =
il | : 0 s
C | ’ B +
-50_ I | ] _50;\\\\‘\\\\‘\|\\‘\||||\||||\\\|
——— 540" = 0 50 100 150 200 250 300
M; [GeV/c?] Dijet Mass [GeV/c?]

e The D@ data are consistent with the SM prediction
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DzJ Fit of SM to Data

e The dijet mass distributions after fitting the SM processes to the data
+ Without Alpgen modeling corrections applied

C T 1 T T T i = q =
! 805 CDF —— Bkg Sub Data (4.3 fo )| 3 L2 - D@, 4.3 (b! —§—DJati - Bicgd
160F = > 300 b) — Bkgd £ 1 5.d.
,-\1 402_ § Gaussian _; (D 250i ( - Diboson
Ng 120F :\f[ || WW+WZ (all bkg syst)| = E - Gaussian (4 pb)
~ § - ol r _ 2
L S0 E g 150—
et i1 z -
= e 100 P(x?) = 0.526
S TR E 50—
i\‘l\\i\l\i\l\\;\!\\k\l\l E = +
'r\ SIS SN A NEEAS O
= c &
I _: —50;\ L L i ‘ L L Il £ ‘ £ 1 L L ‘ L 1 1 1 | L 1 1 1 | L L L 1
00 0 50 100 150 200 250 300
M; [GeV/c?] Dijet Mass [GeV/c?]

e The D@ data are consistent with the SM prediction

 What if we fit to a resonance like the excess seen by CDF?
* Quantify whether the DO data are consistent with such an excess
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D& Modeling WX— lvjj

e Assume a Gaussian distribution in dijet mass with a width determined

by the DO experimental resolution

~ A simplified mode, but a reasonable approximation for a narrow resonance

~ Apples-to-apples comparison to CDF's claim of the excess being consistent with a

cross section of = 4 pb

+ Width estimated from e
WW—-lvj; 012
~ = Ow_jj X\ M/ My o

- For M;; = 145 GeV = 0; = 15.7 GeV 0.08
0.06
0.04

0.02

— WW
— WZ
—— WH@90 GeV (4pb)

[ =]
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D& Modeling WX— lvjj

e Estimate efficiency from WH—Wbb
~ Assume BR( X—1j)=1.0

~ Use efficiency from my=150 GeV for the
Gaussian template with mean of 145 GeV

» To be consistent with CDF

0.14
+ Assign systematic uncertainties 0_125_ - m\’

~ Jet energy scale uncertainty 0_15_ —— WH@90 GeV (4pb)
changes mean by £1.5 % C
0.08F
~ Jet Resolution uncertainty oosk-
changes normalization by 5% L
and width by £3% 0.0aF
0.02f

e 0

[ =]

Jd
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D23 Fitting WX

e Fit WX—lvjj template to the data along with SM processes
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Dz Fitting WX

e Fit WX—lvjj template to the data along with SM processes
+ Floating normalizations of WX, diboson, and W+jets

e+un combined

< B B ——Data < = -1 —¢— Data - Bkgd
S 1200 D@, 431 Gaussian (Fiwed) | S g0 D043 — Bkgd+1sd
© : Il Diboson L = (b) B Dib
&) - (a) ] C 1iboson
= 1000~ [ WtTets = 250 [ Gaussian (Fitted)
o B [0 Z+Jets o8 = - (Gaussian (4 pb)
> 800 [ Top ~ 200 M, = 145 GeV/c?
£ C ] Multijets 2 . i~ evie
S eool — Gaussian (4 pb) S 150
0 - M, = 145 GeV/c? i -
o 100 P(x2) = 0.464
B 50 ;
200/ o 444
0 : L ] PRI E [ & p g TR I RN SN Tl SN NNNY N SN TN | ;-é-'\ L1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/e? Dijet Mass [GeV/c?

* Fitted signal 1s also consistent with no excess
+ How large of an excess is allowed by the DO data?
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D& Limit Setting
e Frequentist approach

+ If the experiment is repeated many times, what fraction would find a more
extreme result?

> Need to simulate repeating the experiment many times
~ Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
~ Two hypotheses: Background only and Signal+Background
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D& Limit Setting
e Frequentist approach

+ If the experiment is repeated many times, what fraction would find a more
extreme result?

> Need to simulate repeating the experiment many times
~ Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
~ Two hypotheses: Background only and Signal+Background

+ Test statistic: Ratio between S+B fit and B-only fit

P(D;S+B)

pgy | = X DIsB) — (DI

LLR = —2log

D = observed number of events
S = predicted number of signal events
B = predicted number of background events

= Construct the LLR probability distribution for each hypothesis and see how they
compare to the observed LLR
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D5 Limit Setting

e Compare observed LLR to the predicted LLR distributions over the
range of dijet mass

(a4 -
j g0 - M LLR; +1sd. D@, 4.3 b
- [ JLLR, #2sd.
= e LLR,
= | eeswes LLRS+B
40 — LIR,,
20
0=
P e
_40 ;I | | | | | | | | | | | | | | | ---..;-.
110 120 130 140 150 160 170

Dijet Mass [GeV/c?]
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Limits on WX

e 95% CL upper limits on WX—1vjj as a function of reconstructed M;
+ Without Alpgen modeling corrections applied

» For Mjj = 145 GeV

» 95% CL exclusion
for cross sections
greater than 1.9 pb

95% C.L. Upper Limit (pb)

. - D@, 4.3 bt - Expected £1 s.d.
N | | Expected £2 s.d.
4§ Observed
- T - Expected

110

120 130 140 150 160 170
Dijet Mass [GeV/c?]
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Limits on WX

e 95% CL upper limits on WX—1vjj as a function of reconstructed M;
* With Alpgen modeling corrections applied

» For Mjj = 145 GeV

» 95% CL exclusion
for cross sections
greater than 1.5 pb

95% C.L. Upper Limit (pb)

5T DO. 4.3 fb! - Expected £1 s.d.
- [ ] Expected £2 s.d.
B — Observed

4 I -Expected

110

120 130 140 150 160 170
Dijet Mass [GeV/c?]
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Limits on WX

e 95% CL upper limits on WX—lvjj as a function of reconstructed M;

+ Without Alpgen modeling corrections applied

:é:.. 2 - D@, 4.3 bt - Expected £1 s.d.
E’ - Expected £2 s.d.
S 4 Observed
e H S - Expected
* For Mjj = 145 GeV &
> 95% CL exclusion 2 3
for cross sections O
greater than 1.9 pb X2
N

110 120 130 140 150 160 170
Dijet Mass [GeV/c?]

e Can also ask: How strongly is an excess at 145 GeV ruled out?
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Limits on WX

* How strongly do the D@ data rule out an excess at 145 GeV?

+ For a cross section
of 4 pb as reported
by CDF

» Exclude at 99.999% CL

Signal Hypothesis P-Value

» 4 standard deviations

T T T T OITmm T TTTMm T T T TTImm T IO T TTTTT

— T
do - & ‘n i o ro o

05 1 15 2 25 3 35 4 45 5
Signal Cross Section [pb]

= The D@ data are not consistent with the excess seen by CDF
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D& Tests with Signal Injection

 What 1f there really were a 4 pb dijet mass resonance at 145 GeV?
~ What would it look like?
+ Make a signal-injected mock “data” sample
~ Composed of data + WX template @ 145 GeV
> Confirm that our studies would find that signal

e Fitting the SM processes to the signal-injected data:

e+u combined

S B —4— Fake Data
~>‘i 12001~ Fake data study B Diboson
2 B
& - [ W+Jets
= 1000 - [ Z+Jets
- B B Top
E 800 [ ] Multijets
2 - — Gaussian (4 pb)
- 5
5 600 . M, = 145 GeV/c
400
200[

1 1 it L 1 L L ‘ L
0 50 100 150 200 250 300
Dijet Mass [GeV/c?]
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D& Tests with Signal Injection

 What 1f there really were a 4 pb dijet mass resonance at 145 GeV?
~ What would it look like?
+ Make a signal-injected mock “data” sample
~ Composed of data + WX template @ 145 GeV
> Confirm that our studies would find that signal

e Fitting the SM processes to the signal-injected data:

e+u combined

“:: i —4— Fake Data “/J = —4— Fake Data - Bkgd
% 1200} Fake data study B Diboson % 2505 Fake data study  Hgd&Tsd
<o 1000 [ W+Jets O 200 B Diboson
< N = %;r;ets < 1502 ---------- Gaussian (4 pb)
S - p— — _ 2
5 800 [ ] Multijets > - Wy = 145G Ve
& B — Gaussian (4 pb) £ 100 —
> 600 M. = 145 GeV/c? > a P(x» =0.010
- - ! =50
400 = 23
B Ore
C = +
200 - 505 +
B 1 1 it L 1 L L ‘ L : L L ‘ L £ L £ ‘ £ L L L ‘ L 1 1 L ‘ L 1 1 1 | L 1 1 1
OO 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c’]
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D& Tests with Signal Injection

 What 1f there really were a 4 pb dijet mass resonance at 145 GeV?

> What would it look like?

+ Make a signal-injected mock “data” sample
~ Composed of data + WX template @ 145 GeV
= Confirm that our studies would find that signal

e Fitting the SM + WX template to the signal-injected data:

e+u combined

SN i —¢— Fake Data SN = —— Fake Data - Bkgd
< 12001~ Fake data study [ Gaussian (Fitted) = 300 Fake data study — Bkgd +1sd.
L B Il Diboson ) - B Dib
D . @ - 1DOSON
= 1000 - [ W+Jets o 250- 1 Gaussian (Fitted)
: B - %‘FJetS S 200 i .......... Gaussian (4 pb)
> 8001 S Top > - M. = 145 GeV/c?
= = [ ] Multijets g = i
0 ool — Gaussian (4 pb) s 150 =
A - M, = 145 GeV/c® 2 E
: 100= P(x2) = 0.542
400 — -
N 50 =
200 o 444
, C +
O B 1 1 it L 1 L L ‘ L ——;; : ‘ L £ ‘ £ L L ‘ L 1 1 L ‘ L 1 1 1 | L 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Dijet Mass [GeV/c?] Dijet Mass [GeV/c’]
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D& Tests with Signal Injection

 What 1f there really were a 4 pb dijet mass resonance at 145 GeV?
~ What would it look like?
+ Make a signal-injected mock “data” sample
~ Composed of data + WX template @ 145 GeV
> Confirm that our studies would find that signal

o T
. . . — ~ P LLRy £1 sd. 1
e LLR distribution =805 IIR. 125 D@, 4.3 fb
=, LLR
60: ------ LLR];_B
40 —LIRy,
Observed Data LLR — = — MRuged
. . 20 =
Signal-Injected LLR \r
_20 ................................
= We clearly would L e e
have seen a 4 pb excess A0

| | | | | | | | ‘ | | | | ‘ | | | | | | | | | ‘ | | | |
110 120 130 140 150 160 170

if 1t were there Dijet Mass [GeV/c?]

Fermilab Wine & Cheese Seminar 51 Joseph Haley (7



DD Differences Between CDF and DP

* Detector and Object Reconstruction

+ Different jet cone algorithms
+ Different Jet Energy Scale corrections ?

e Monte Carlo generators

CDF: DO:
PDF set: CTEQSL CTEQ6LI1
Pythia version: v6.326 v6.409
Pythia tune: tune A “DO tune A” (like tune A, but for CTEQ6L1)
Alpgen version: v2.1 v2.11 wecfix

e Alpgen parameters and uncertainties

+ D@ assigns uncertainties on kinematic modeling, parton-jet matching, parton
shower model, renormalization/factorization scale, PDF
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Summary

e Used the same selection as the CDF analysis

e Studied the dijet mass spectrum in the range 110 — 170 GeV

= D@ data are consistent with the SM predictions

+ We verified that:

~ We would see a 4 pb
excess 1f it were in
the DO data

~ We get consistent results with

or without kinematic Alpgen
corrections

+ For a resonance at 145 GeV

= Exclude 1.9 pb at 95% CL
= Exclude 4 pb at 99.999% CL

Events / (10 GeV/c?)

D@, 4.3 fb’!
(b)

—¢— Data - Bkgd

—— Bkgd 1 s.d.

B Diboson

.......... Gaussian (4 pb)
M, = 145 GeV/c?

P(x2) = 0.526

= L1 (R R R
0 50 100

L ‘ L L L L ‘ L L L L ‘ L | L L
150 200 250 300
Dijet Mass [GeV/e?]

Submitted to Phys. Rev. Lett. June 9, 2011; Fermilab-PUB-11/267-E
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http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B/

Thank you
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